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Abstract. We present a new, fully automatic algorithm for liver tumors seg-

mentation in follow-up CT studies. The inputs are a baseline CT scan and a de-

lineation of the tumors in it and a follow-up scan; the outputs are the tumors de-

lineations in the follow-up CT scan. The algorithm consists of four steps: 1) de-

formable registration of the baseline scan and tumors delineations to the follow-

up CT scan; 2) automatic segmentation of the liver; 3) training a Convolutional 

Neural Network (CNN) as a voxel classifier on all baseline; 4) segmentation of 

the tumor in the follow-up study with the learned classifier. The main novelty 

of our method is the combination of follow-up based detection with CNN-based 

segmentation. Our experimental results on 67 tumors from 21 patients with 

ground-truth segmentations approved by a radiologist yield an average overlap 

error of 16.26% (std=10.33). 

1 Introduction 

Radiological follow-up of tumors is essential liver tumor therapy. The analysis of 

Tumor volume changes in longitudinal CT scans is required for treatment evaluation. 

Today, most radiologists estimate the tumor size with linear measurements methods 

such as RECIST [1]. It is well known that this estimate can be off by as much as 50%, 

especially for tumors with irregular shapes. Previous research shows that true volu-

metric measurements are the most accurate information for tumor monitoring [2].  

   Tumor delineation is the main bottleneck of tumor volume computation. Manual 

delineation is time-consuming, is user-dependent, and requires expert knowledge. 

Semi-automatic segmentation methods, e.g., live wire, region growing, and level sets 

also require user interaction and may lead to significant intra- and inter- observer 

variability. Automatic tumor segmentation poses significant challenges and is not part 

of the clinical workflow, with the exception of a few tumor types. Model-based meth-

ods are also limited, as they require the construction of generic tumor priors for the 



segmentation. Moreover, most methods process each follow-up scan independently 

without taking advantage of the availability of the previous scans of the same patient.  

   In the past decade, researchers have developed a variety of methods for semi-

automatic and automatic segmentation of liver tumors. Bourquain et al. [3] describe 

an interactive region-growing method for the vessels and tumors. Li et al. [4] use a 

machine learning technique to classify the intensity profiles of the liver tumors. The 

method is biased to blob-like tumors, so it is less accurate for tumors with irregular 

borders. Both methods require many seeds per CT slice and are thus of limited clini-

cal use. Other methods use machine learning for liver tumors segmentation. However, 

the features that they use for the classification are hand-crafted and different for each 

method. Freiman et al. [5] use an SVM classifier to automatically produce many seeds 

for a graph based liver tumor segmentation. The hand-crafted features were the mean, 

std, minimum and maximum value in a 5x5x5 window. Zhou et al. [6] also use an 

SVM classifier, with the area median and the voxel value as features. Liver tumors 

segmentation was the subject of the 2008 MICCAI 3D Liver Tumors Segmentation 

Challenge Workshop. It consisted of 14 groups describing interactive, semi-

automatic, and automatic liver tumors segmentation algorithms [7].  

   Recent works directly address the follow-up tumor segmentation task. In these 

works, the tumor delineation of the baseline scan serves as a patient-specific prior for 

the automatic tumor segmentation of the follow-up scan [8-10]. They show that the 

robustness and accuracy of the tumor volume and tumor volume difference measures 

significantly improve when the patient-specific tumor delineation from the baseline is 

used. Weizman et al. [8] uses a prior from the baseline MRI scan for Optic Path 

Gliomas segmentation. Vivanti et al. [9] use a similar method for lung tumors.  

   Only a few works address the follow-up of liver tumors. Cohen et al. [10] use the 

baseline tumor delineation after affine registration between the two scans to initialize 

2D region-growing segmentation for each scan slice. Their work is limited to liver 

metastases. Moltz et al. [11] segment sphere-shaped liver metastases based on rigid 

registration between the scans. Militzer et al. [12] perform follow-up liver tumors 

segmentation with a pre-computed generative growth model created with Probabilistic 

Boosting Trees from many follow-up cases. To the best of our knowledge, [12] is the 

only work that does not assume spherical liver tumors in the follow-up framework. 

    Among the various machine learning techniques currently in use, Convolutional 

Neural Networks (CNN) [13] were brought to their full potential by making them 

both large and deep. They have proved their effectiveness in a wide variety of tasks, 

ranging from handwritten character recognition to neuronal structures segmentation. 

One of the advantages of CNN over SVM methods is that of automatically learns the 

features, thus obviating the need to customize hand-crafted features. 

    In this paper we present a new automatic algorithm for liver tumor segmentation in 

follow-up CT studies. The inputs are the baseline scan and the tumors delineation, and 

a follow-up scan; the outputs are the tumors delineations in the follow-up CT scan. 

The algorithm consists of four steps: 1) deformable registration of the baseline scan 

and tumors delineations to the follow-up CT scan; 2) automatic segmentation of the 

liver; 3) construction of a voxel classifier by training a Convolutional Neural Network 

(CNN) on all baseline scans and; 4) final segmentation of the tumor in the follow-up 



study with the learned classifier. The main novelty of our method is the combination 

of follow-up based detection with CNN-based segmentation. 

   The advantages of our method are: 1) it is fully automatic; 2) it addresses a wide 

variety of liver tumors and metastases; 3) it performs local deformable registration to 

model more accurately the tumor transformation; and 4) it uses CNN to simultaneous-

ly learn features and builds a classifier based on them.  

2 Method 

The basic premise of our method is that the radiologist-validated tumor delineation 

in the baseline scan is a high-quality prior for the tumor location and size in the fol-

low-up scan. The tumor location and size prior is automatically constructed by regis-

tration of the baseline and follow-up scans, thus allowing us to handle a large variety 

of tumors sizes (Fig. 1), and to obviate the need for detection method. 

2.1 Registration 

The first step is to automatically compute a liver mask using the stand-alone liver 

segmentation method in [15]. The method relies on Bayesian classification, adaptive 

morphological operations, and active contours for liver segmentation. We perform 

this segmentation for both the baseline and the follow-up scans. Although not always 

accurate, this mask provides an adequate coarse Region of Interest (ROI). 

The next step is to define a ROI that contains the follow-up tumor with high prob-

ability. This ROI is obtained  by registering the baseline scan and its tumors delinea-

tions to the follow-up scan. The registration between the baseline and the follow-up 

scan is performed in two steps. The first is a global deformable registration between 

the baseline and follow-up scans in the liver ROI automatically computed in the base-

line scan using the liver mask. The liver global ROI deformable registration consists 

of a rigid affine registration followed by a deformable registration with B-Splines.  

The second step is a separate local deformable registration for each baseline tumor 

delineation. The baseline tumor delineation is enclosed in an axis-aligned bounding 

box that defines the local tumor ROI. The local registration is performed for each 

baseline tumor in three stages: 1) pure translation registration; 2) rigid affine registra-

tion, and; 3) deformable registration by Mutual Information. The baseline delineation 

is transferred to the follow-up scan using the concatenation of the resulting transfor-

mations, and bounded in an axis-aligned 3D bounding box. This local registration step 

allows modeling more accurately the tumors changes. 

Finally, the follow-up tumor ROI is doubled in each direction to account for possi-

ble tumor growth of up to eightfold in volume and to compensate for residual registra-

tion errors. The registration stage obviates the need for a separate detection step. 

2.2 Deep Learning  

We use a Convolutional Neural Network (CNN) to classify each voxel as being ei-

ther ‘tumor’ or ‘healthy’. The classification is based on voxel intensities in an axis-



aligned square centered at the voxel. The liver mask is used to exclude the voxels 

from the baseline set that are outside the liver. 

We define first an Artificial Neural Network (ANN) as a directed weighted graph 

whose computation units are the graph vertices and whose arcs are weighted. In a 

feed-forward computation,  for each vertex vi,  the values from each  input vertex vj  is 

Fig. 1.  Illustration of the main steps of the segmentation process on two tumors (top and bot-

tom row): (a) baseline tumor with delineation (red) on which the CNN is trained; (b) follow-up 

tumor with transformed baseline delineation superimposed on it. The deformable registration 

between the baseline and the follow-up scans is used to set the ROI that contains the follow-up 

tumor; (c) tumor voxel classification based on the CNN; (d) liver mask for the removal of false 

positives, and; (e) final segmentation after segmentation leaks removal.  

multiplied by the weight of the connecting edge wj. The output of vi  is a function of 

the sum       , e.g., the Rectified Linear Unit function                  . 

    In the training step, the ANN is discriminatively trained by determining its edge 

weights with the standard back-propagation algorithm. The weights are updated by 

stochastic gradient descent with the equation: 

                    
  

    

 

where η is the learning rate and C is the cost function. At iteration t, a single tagged 

training example is used to adjust the weights by back propagation. After each epoch 

– a one-time pass over the entire training set – the learning rate η is reduced to allow 

finer weights adjustment in the following epochs. 

 In a CNN, one or more layer is convolutional: the nodes are grouped in kernels, 

and the weights of the input edges to these nodes are the values of this kernel. When 

feed-forwarding through each node, the computation of the sum        is also the 

convolution of one kernel element and the input values. The actual values of the ker-

nels, together with all other edge’s weights are determined by back propagation. The 

http://en.wikipedia.org/wiki/Discriminative_model
http://en.wikipedia.org/wiki/Backpropagation
http://en.wikipedia.org/wiki/Stochastic_gradient_descent
http://en.wikipedia.org/wiki/Loss_function


convolution layer replaces the correlation with manually-determined kernels in the 

feature-extraction step in other machine learning methods. The advantage of CNN is 

that it can simultaneously learn both the appropriate kernels for feature extraction and 

a voxel-classifier based on those features.  

We use a CNN with seven hidden layers (Fig. 2). The input layer has one node for 

each pixel a the 35x35 patch. The first hidden layer is convolutional, with 48 kernels. 

Each kernel computes a convolution of the input with a 4x4 kernel followed by a 

ReLU function and a 2x2 pooling layer. Layers three and five are convolutional, with 

48 5x5 kernels followed by a ReLU function and a 2x2 pooling layer. Layer seven is 

fully-connected with 200 nodes followed by a ReLU function. The output layer is the 

classification layer with two fully connected output nodes based on the softmax func-

tion: 

    
        

          

 

where    is the probability to be in a class, and    and    are the total inputs from 

nodes j and k in the former layer, respectively. The number of kernels, nodes, and 

their functions were determined experimentally after several trial runs.  

   To separate between training and test sets, we train our network on the baseline 

scans, and test it on the follow-up tumors. The training set is derived  from the base-

line tumor in four stages: 1) remove non-liver voxels from the baseline scans using 

the liver mask; 2) normalize the baseline tumor ROI to compensate for different con-

trast agent doses so its mean and std intensity values are equal to those of the follow-

up tumor ROI; 3) remove from the training set examples from the larger class, so the 

‘tumor’ and ‘healthy’ classes are of  equal size, and; 4) shuffle the training set. We 

then train the CNN with this training set for many epochs until convergence, using 

dropout (randomly zeroing) of half of the edges after each epoch to avoid over-fitting. 

2.3 Segmentation 

Once the CNN is trained, the follow-up tumor ROI is segmented by classifying all of 

its voxels in four steps: 1) run the trained CNN in feed-forward to classify each patch; 

2) classify non-liver voxels as healthy tissue with the liver mask of the follow-up 

scan; 3) remove the remaining segmentation leaks with the method described in [8], 

and; 4) remove small holes and “islands” with morphological operations.  



3 Experimental Results 

    We evaluate our method on 67 tumors from pairs of CT scans from 21 patients. The 

scans were acquired on a 64-row CT scanner (Phillips Brilliance 64) and are of size 

512×512×350−500 voxels, 0.6−1.0×0.6−1.0×0.7−3 mm, with contrast agent. The 

cases were carefully chosen from the hospital archive to represent the variety of pa-

tient ages, conditions, and pathologies. The tumors include hypodense, mixed tumors, 

and metastases of varying sizes and shapes with volume > 1cc. The mean time differ-

ence between the baseline and the follow-up scans is 3.78 months (std=2.44), in a 

time range of 1.03-11.2 months. The tumor volumes range is 1.1-4477.86cc. The 

mean volumetric change is 126.48cc (std=224.05). An expert radiologist approved the 

tumors ground-truth delineations in both the baseline and the follow-up scans.  

    We quantify the follow-up tumor segmentation error with the DICE volumetric 

overlap error (VOE) and the average symmetric surface distance (ASSD) over the 

entire liver. A VOE > 70% is considered as failure and not included in the mean. 

   We compare our results to Freiman et al. [5] since their code is available to us, re-

port good stand-alone segmentation results [7] and use machine learning with hand-

crafted features. We use the liver tumor ground truth center of mass as a seed for their 

method. Note that our validation data set is significantly larger and more diverse than 

that of [7]. 

 

Fig. 2. Illustration of the CNN as a voxel classifier: nine layers, of which 7 are hidden layers, 

Input: 35x35 voxel-centered patch. F.C. – Fully Connected. Output: voxel classification as 

‘tumor’ or ‘healthy’ 

   We have implemented our method with the following settings. For registration, we 

use the Elastix registration toolbox [16] with the gradient descent optimizer with up to 

200 iterations. For B-Spline registration, we set the grid spacing to 12mm. For CNN, 

we use the Caffe deep learning framework with GPU acceleration [17]. In each epoch, 

a batch of 100 examples is processed simultaneously. We stop the convergence after 

6,000 epochs. All computations were performed on an Intel® Core™ i7-4930K CPU 

@3.40GHz, 3701 MHz, 6 Cores, 32 GB RAM running Windows 7 x64 operating 

system and NVIDIA GeForce GTX TITAN GPU. 



    Table 1 summarizes the results. Our method achieves a VOE of 16.75% (std=9.88), 

a significant improvement of 60.29% in comparison to the tumor stand-alone segmen-

tation in [5]. The ASSD is 2.05 mm (std=1.68), an improvement of 81.65%. The suc-

cess rate was improved by 89.98%. The minimum and maximum values were also 

improved. The running time of our method was less than 5 minutes for all cases. 

    To quantify the contribution of the segmentation step, we compute the accuracy of 

the patient-specific prior to the the registration step. The VOE and ASSD without the 

segmentation step are 42.46% (std=17.1) and 3.32 mm (std=1.74) respectively. To 

quantify the inter-observer delineation variability, we asked a second radiologist to 

delineate 10 datasets. The mean VOE and ASSD between the delineations are 11.83% 

(std=11.12) and 1.16 mm (std=1.12) respectively.  

We conclude that the follow-up framework effectively focuses the segmentation on 

the tumor ROI using the baseline tumor delineation and contributes to the robustness 

and accuracy of the follow-up segmentation. This is achieved by providing a strong 

prior for the follow-up tumor segmentation. Stand-alone methods such as that in [5] 

must detect the tumor ROI in the entire image base on weak or non-existent priors,  

which sometimes fails altogether and may decrease the delineation accuracy.  

 

 

 

 

 

 

 

 

Table 1. Results: VOE – Volume Overlap Error. ASSD – Average Symmetric Surface Dis-

tance. Ours - our results, [5] - results of [5] on our database, Reg. - using the transformed de-

lineation from the baseline scan into the follow-up scan as a segmentation. 2nd obs. - delinea-

tions of a second radiologist, to measure the inter-observer variability. 

4 Conclusions 

We have presented a new automatic liver tumor segmentation method for follow-

up CT studies. The inputs to the method are baseline CT scan of the liver, the delinea-

tion of the tumor in it and the follow-up scan. The output is the delineation of the 

tumor in the follow-up scan. Our method uses a cascade of registration methods to 

define a well-fitted tumor ROI on the follow-up scan based on the baseline delinea-

tion. A Convolutional Neural Network is trained on all baseline liver masking to clas-

Success 

% 

ASSD [mm] VOE [%]  

Max Min Std Mean Max Min Std Mean  

90.47 5.14 0.28           1.68           2.05           36.10           4.53          9.88             16.75   Ours 

42.85 28.96 

  

3.72          7.89           11.17           65.06          8.49         

  

19.43           42.18          [5] 

100 6.35 

 

   1.21          

  

1.74           3.32           69.05           18.02          17.10          42.46          Reg. 

100 3.52       0.07           1.12           1.16           29.32           1.29          11.12           11.83          2nd obs. 

  



sify tumor and healthy voxels. The CNN is used as a voxel classifier to produce the 

follow-up tumor segmentation. The segmentation leaks in the resulting tumor seg-

mentation are then removed to produce the final result.  

     The novelty of our work is in the use of CNN with automatic features learning – in 

contrast with previous work that use various hand-crafted features. Importantly, the 

follow-up framework obviates the need for tumor detection step, significantly increas-

ing robustness and accuracy as compared to stand-alone segmentation methods. Our 

method yields an overlap error of 16.75%, an improvement of 60.29% in comparison 

to [5]. Our registration approach includes an additional local step that focuses on the 

tracked tumor and helps refine the ROI. Our results on 67 tumors pairs from 21 pa-

tients show a considerable improvement over stand-alone SVM based methods and 

may provide relevant clinical measurements for liver tumors. We plan to apply our 

method to other organs’ tumors, and to additional imaging modalities, e.g.  MRI. 
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